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cylinders completely filled with fluid. The piezoelectric layers of the laminated cylinder

are supposed to be polarized in the radial direction and the fluid is considered inviscid
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various parameters on the natural frequencies and mode shapes of the fluid/

piezoelectric–structure coupled system.
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1. Introduction

Theoretical modeling and simulation of smart structures is an active area of research since the early 1990s. Hence, for
the purpose of verifying the accuracy of the widely used approximate theories or computational models of piezoelectric
adaptive structures, the interest for exact analytical solutions has much increased during the last decade. These low-cost
validation techniques are generally developed for static or free-vibration analyses of simply-supported structures. Most of
the available literature on exact solutions for free vibration of smart structures has concerned piezoceramic plates. Thus,
several three-dimensional (3D) exact [1–3] or approximate [4,5] and two-dimensional (2D) closed-form [6] solutions have
been proposed in the literature for the free-vibration analysis of simply-supported (SS) piezoelectric laminated plates. Both
through-the-thickness exponential distribution methods [1,4] and state-space approaches [2,5,7] have been used for the
free-vibration problem formulation.

Many studies concerning analytical solutions of laminated piezoelectric cylinders have been proposed in the literature,
including those described in the books of Parton and Kudryavtsev [8] and Tzou [9]. It is only recently that exact 3D
solutions have been presented for the free-vibration analysis of simply-supported elastic [10,11] or piezoelectric [12,13]
cylinder filled with fluid. Chen and Ding present [10] an exact solution for the free vibration of a simply supported,
transversely isotropic cylindrical shell filled with compressible fluid. The displacement separation technique as well as the
orthogonal series expansion method is employed in order to solve the problem. Bessel functions with complex arguments
are directly used in the solution for the case of complex eigenvalues. Frequency equation of the coupled vibration problem
is obtained by taking into account the effect of the inner fluid. The paper [11] describes a 3D exact solution of a simply
supported arbitrarily thick hollow orthotropic cylinder completely filled with fluid. The formulation retains, as state
variables, the standard mechanical displacements and transverses stresses for the structure augmented with the pressure
ll rights reserved.
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for the fluid. In [12], the coupled vibration of an inhomogeneous orthotropic piezoelectric hollow cylinder filled with
internal compressible fluid is studied using the 3D equations of piezoelasticity. The cylinder is assumed to have a
functionally graded property along the thickness direction (radial direction) and is polarized in the axial direction. A 3D
exact solution of scattering and active acoustic control from a submerged piezoelectric-coupled orthotropic hollow
cylinder is presented in [13]. The studied structure is an arbitrarily thick bilaminated circular hollow cylinder of infinite
extent, which is composed of a cylindrically orthotropic axially polarized piezoelectric inner layer perfectly bonded to an
orthotropic outer layer and filled with compressible fluid. The structure is excited by time-harmonic plane-progressive
sound wave obliquely incident.

This paper presents a 3D exact mixed state-space solution, as well as a parametric analysis, for the free vibration of
simply-supported arbitrarily thick laminated piezoceramic cylinder completely filled with fluid. The piezoelectric layers of
the laminated cylinder are polarized in the radial direction. The fluid is inviscid and can be considered either compressible
or incompressible. To the author’s knowledge, this 3D solution, which is an extension of our conference paper [14], is
detailed here for the first time. The proposed formulation, inspired by the one developed for the free-vibration analysis of
laminated plates with embedded piezoceramic layers [7], retains, as state variables, the standard mechanical
displacements and transverse stresses. These variables are augmented, for the piezoelectric case, by electric transverse
displacement and potential, and for the fluid–structure coupled problem, by the fluid pressure. The classical transfer-
matrix solution technique is employed to solve the problem. Natural frequencies and mode shapes are computed for
different electrical boundary conditions at the inner and outer cylindrical surfaces of the piezoelectric layers. A parametric
analysis is then conducted to show the influence of radius-to-thickness and length-to-thickness ratio, electric boundary
conditions, and fluid effect. This exact solution and the corresponding results can be used to validate other analytical or
numerical solutions.

2. Piezoelectric laminated state-space formulation

Consider a hollow circular cylinder of length L, internal radius R, having an arbitrarily constant thickness h and made of
M orthotropic piezoelectric layers. The latter can have different thickness and material properties, but with material axes
parallel to those of the adopted cylindrical coordinate system (er ,ey,ex) (see Fig. 1). The cylinder is mechanically unloaded
while the piezoelectric layers are polarized along the radial axis and could be either charge-free (for open-circuited
electrodes), or free of electric potential (for short-circuited electrodes).

The 3D linear constitutive equations of the jth piezoelectric layer, polarized along its material axis er, are for the
converse and direct effects, respectively, given by
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Fig. 1. Composite cylinder: geometry and notations.
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and
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where sij and di (i,j¼ x,y,r) are the stress tensor and the electric displacement vector components; cIJ, ekJ and Ekl (k,l=1,2,3;
I,J=1,y,6) denote elastic, piezoelectric and dielectric material constants.

The strain tensor eij (and gij) and electric field vector Ei components are linked to the mechanical displacement ui and
electric potential f by the usual gradient relations
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Substituting the latter in the constitutive equations, then combining some of the resulting equations provides the radial
derivatives of the mechanical displacements and electric potential
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with the following constants:

a13 ¼ c13E33þe33e31, a23 ¼ c23E33þe33e32, a33 ¼ c33E33þe2
33

b13 ¼ c13e33�c33e31, b23 ¼ c23e33�c33e32

The electrodynamics response of the jth piezoelectric lamina, free of mechanical and electric body loads, is governed by the
classical stress and charge equations, respectively,
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where rS is the mass density of the cylinder.
After combining some of the previous equations, the thickness first derivatives of the radial stresses and radial electric

displacement can be written as
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with the following constants:

c*
11 ¼ c11�ðc13a13þe31b13Þ=a33 , c*

22 ¼ c22�ðc23a23þe32b23Þ=a33

c*
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The combination of Eqs. (1) and (2) gives the jth piezoelectric lamina state-space equation
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where
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The matrices aij (i,j=1,2) are given in Appendix A. It can be seen that the sub-matrices a12 and a21 are individually
symmetric thanks to the chosen order of the components of the state sub-vectors x1 and x2 but the system matrix of Eq. (3)
remains not symmetric.
3. Simply-supported piezoelectric cylinder

We now consider the free vibrations of a hollow cylinder subjected to simply-supported mechanical boundary
conditions and short-circuited electrical conditions at x=0 and L. These conditions can be written as

ur ¼ uy ¼ sxx ¼f¼ 0 at x¼ 0,L (4)

The mixed state variables that satisfy the previous electromechanical boundary conditions can be written in trigonometric
series as
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where o is the circular frequency (rad/s); i is the imaginary unit (i2=�1); r ¼ r=R and x ¼ x=L; the superscript 1 indicates a
quantity in the first layer of the cylinder; m and n are the half-wavenumbers in the axial and circumferential directions,
respectively. Moreover, the uppercase letters denote the non-dimensional amplitudes of the corresponding lowercase
physical quantities.

It is worthwhile to notice that Fourier series of Eqs. (5) is summed on m and n. However, in the free-vibration analysis, it
is well known that due to the orthogonal trigonometric functions, these summations uncouple and the corresponding
eigenvalue problem can be solved for each (m,n) couple.

The substitution of Eqs. (5) in the state-space equation (3), transforms it into
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and

with

l¼mpR=L, o ¼oR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1

S=c1
66

q
:

It is important to note that the previous matrices, which are associated to the jth piezoelectric lamina, are not constant
(some terms depend on r) making difficult the resolution of Eq. (6). In the resolution method, which will be explained in
Section 6, each layer of the laminated cylinder is divided into thin sub-layers such that the previous matrices can be
assumed constant within each sub-layer. It can also be noted that the matrices A12 and A21 become symmetric by choosing
�Ur and �F instead of Ur and F, respectively, in X2.
4. Compressible fluid motion

We consider in this section a homogeneous, inviscid and compressible fluid, gravity effects being neglected. The
pressure field p in the fluid is then governed by the wave equation

Dp�
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q2p

qt2
¼ 0 (7)
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where cF is the constant speed of sound in the fluid. In the cylindrical polar coordinate system, this equation is written in
the following form:
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As for the structure variables, fluid pressure can be expressed in terms of trigonometric series by

p¼ rFc2
F

X1
m ¼ 0

X1
n ¼ 0

PðrÞsinmpxcosnyexp iot (9)

where rF is the mass density of the fluid. Note that the choice of the sine and cosine functions in Eq. (9) is link to the
continuity conditions at the fluid–structure interface.

The substitution of Eq. (9) in Eq. (8) leads to
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Eq. (10) represents a Bessel equation whose solution depends on the sign of v2:
�
 for v240:

P¼ AJnðvrÞþBYnðvrÞ )
qP

qr
¼ AvJ0nðvrÞþBvY 0nðvrÞ (11)

where Jn and Yn represents, respectively, Bessel function and modified Bessel function of the first kind and order n.
Moreover, A and B are constants obtained from the boundary conditions.
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where E is the constant obtained from the boundary conditions.
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where In and Kn represents, respectively, modified Bessel function of the first and second kind, respectively. Moreover,
C and D are constants obtained from the boundary conditions.
5. Boundary conditions at the fluid–structure interface

We consider now that the simply-supported cylindrical cavity is completely filled with fluid. At the fluid–structure
interface (r ¼ 1), we have the continuity conditions of the radial displacement (deduced from the linearized Euler equation)
and the normal stress. These two conditions lead to
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The third boundary condition is obtained on the axis of the cylinder (r ¼ 0) due to the axisymmetry of the problem. This
condition is written as
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Using Eq. (16), PðrÞ can be reduced to
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which gives the derivatives of PðrÞ:
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Using Eqs. (18) and the continuity condition of the radial displacement at the interface r ¼ 1 (Eq. (15b)), the constants A,
E, F and C are given by
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Finally, using the continuity condition of the normal stress at the interface r ¼ 1 (Eq. (15a)) and replacing P by its
expression (17), the radial stress at the fluid–structure interface can be obtained for any value of v2
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The radial stress at the fluid–structure interface given in Eq. (20) will be used as boundary condition in the free vibration
problem described below.

6. Resolution of the free-vibration problem

As previously mentioned, for the resolution of the free-vibration problem, the laminated cylinder must be decomposed
into N thin sub-layers (see Fig. 2).

For each sub-layer k, Eq. (6) can be written in condensed form

q
qr

XðkÞ ¼AkXðkÞ (21)

where Ak is now a constant matrix computed at the average radius of the sub-layer k. The solution of Eq. (21) can then be
written in the following transfer matrix form:

XðkÞðrkþ1Þ ¼ TkXðkÞðrkÞ (22)

with

Tk ¼ expðhkAkÞ

where hk is the thickness of the kth sub-layer and Tk its lamina transfer matrix which maps the state vector at its bottom
surface to that at its top.

The eigenvalue problem to be solved for the free-vibration analysis is obtained by the assembly of the sub-layer transfer
matrices using the appropriate interface continuity conditions.



Fig. 2. Through-thickness view of the laminated composite cylinder.
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Classically, the mechanical displacements and radial stresses, as well as electric radial displacement and potential are
considered continuous across the interface between k and k+1 sub-layers. Hence, the electromechanical interface
continuity relations can be written in terms of the full state vector by

Xðkþ1Þ
ðrkþ1Þ ¼XðkÞðrkþ1Þ (23)

for k=1,y,N�1.
Using recursively Eq. (23), combined with Eqs. (22), provides an eighth-order assembled transfer matrix equation

Xjr ¼ 1þh=R ¼ TXjr ¼ 1 (24)

where the transfer matrix is the product of the sub-layer transfer matrices

T¼
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k ¼ N

Tk

After suitable rows and columns interchanges, Eq. (24) can be written as
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where the vectors XU and XS are given by
�
 in open-circuited (OC) configuration:
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T (26)

in short-circuited (SC) configuration:
�
XU ¼ ðUx Uy �Ur DrÞ
T, XS ¼ ðSrr Srx Sry �FÞT (27)
The external surface of the cylinder is free of transverse stresses and can be either free of electric radial displacement (in
OC configuration) or free of electric potential (in SC configuration) such that XSð1þh=RÞ ¼ 0. At the inner surface, we have
Srxð1Þ ¼Sryð1Þ ¼ 0 and either Dr(1)=0 (in OC configuration) or Fð1Þ ¼ 0 (in SC configuration). Moreover, due to the internal
fluid, Srrð1Þ satisfies Eq. (20). Considering all these boundary conditions, Eq. (25) gives

0¼ TSUXUð1Þ (28)

where

TSU ¼ TSUþo2Urð1ÞQ ð1Þ
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0
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For non-trivial solution of Eq. (28), the determinant of the matrix TSU must vanish. Thus, the natural frequencies of the
composite piezoelectric cylinder filled with a compressible fluid can be obtained by solving the following equation:

detTSU ¼ 0 (29)

This equation is solved numerically using Matlab software for several values of o in a given frequency range. Once a
change of sign is found for the determinant, the bisection method is used to refine the root estimation to the required
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accuracy. It can be notice that, for fixed (m,n) couple, an infinite number of solutions exist for Eq. (29), representing the so-
called thickness modes (denoted t). For each calculated natural frequency, identified by the (m,n,t) triplet, the initial state
vector XU(1) is next computed using Eq. (28). Then, the interface unknowns are deduced from Eq. (22) for a given electric
boundary conditions. After that, the through-the-thickness distributions of the electromechanical variables can be
evaluated.

7. Numerical examples

7.1. Laminated composite cylinder filled with fluid

We consider in this first example a three-layer cross-ply [01,901,01] simply-supported cylinder filled with a
compressible fluid. The material and geometric data of the cylinder are given in Table 1 and the fluid is characterized
by a mass density rF ¼ 1000 kg=m3 and a speed of sound cF=1500 m/s.

Table 2 shows a comparison of the frequency parameter o% ¼oR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rS=E2

p
for the empty shell computed by our method

and those given in [15] using an analytical solution based on Love’s shell theory, and in [16] using the wave propagation
method. An excellent agreement can be observed for all modes, thus validating the state-space method for laminated
elastic structures. It can also be noted that for shells with small length-to-radius ratios, as in the case L/R=1, the minimum
frequency occurs for the larger n. Nevertheless, for L/R=10, the natural frequencies decrease when n varies from 1 to 4, and
increase for n larger than 4.

Table 3 presents the frequencies of the fluid–structure coupled system given by the proposed exact solution and those
obtained by the finite element method developed by the authors in [17]. We recall that the shell finite element is based on
the Kirchhoff–Love theory. The results, given for the six first circumferential harmonics, show a good agreement between
the two methods. This free-vibration example validate the numerical implementation of the previously described state-
space solution in a fluid–structure case.

7.2. Free vibration of a piezoelectric cylindrical shell filled with a compressible fluid

In order to validate and analyze the formulation for piezoelectric materials, we present in this example a comparative
study for a simply-supported single-layer piezoelectric cylindrical shell with or without internal compressible fluid. The
geometrical properties are L=30 mm, R=4.5 mm and h=0.5 mm. Moreover, the piezoelectric material is the PZT-5H (see
Table 7 for the properties) and the considered fluid has a mass density rF ¼ 1000 kg=m3 and a speed of sound cF=1500 m/s.
Note that a null pressure is prescribed at both ends of the fluid cylinder.

The differences between SC and OC natural frequencies are used to evaluate the effective modal coupling coefficient
EMCC [18] which represents physically the percentage of the mechanical strain energy converted into the electric one and
vice versa,

EMCC ð%Þ ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

OC�o2
SC

o2
OC

s
(30)

The first 20 modes of the piezoelectric cylinder were computed using the proposed exact solution for (i) elastic case, (ii)
short-circuited case (f¼ 0) and (iii) open-circuited case (D=0). Elastic modes have been also calculated with the finite
element code MSC-Nastran to check the modes identification.

For illustration purpose, the roots of the characteristic equation (29) are presented in Fig. 3 in the elastic case for n=1
and m=1.

The obtained results are shown in Table 4 for the non-dimensional frequencies and EMCC, and in Fig. 4 for the first 10
modal shapes. They indicate that:
�

Tab
Ma

M

E

G

n
r

The elastic results are in very good agreement with those obtained with 3D finite element method. The latter were
obtained with a fine mesh discretization of 100 000 hexaedric elements.

�
 Among the first 20 modes, four special modes appear (see Fig. 5 and Table 4): two torsional modes (1,0,1) and (2,0,1),

one axial mode (0,1,1), and one axisymmetric mode (1,0,2). The first three modes do not present any electromechanical
coupling due to the radial polarization:
le 1
terial properties of a transverse isotropic layer and geometrical data of the elastic laminated cylinder [15].

aterial properties Geometric data

2=19 GPa, E1/E2=2.5 Inner layer thickness =h/3

12=4.1 GPa Middle layer thickness =h/3

12 ¼ 0:26 Outer layer thickness =h/3

S ¼ 1643 kg=m2 h/R=0.002



Table 2

Non-dimensional frequency parameter o* ¼oR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rS=E2

p
of a [01,901,01] simply-supported laminated cylinder (m=1).

L/R n Present Lam [15] Zhang [16]

1 1 1.060220 1.061284 1.061283

2 0.803248 0.804054 0.804052

3 0.597729 0.598331 0.598328

4 0.449689 0.450144 0.450140

5 0.344901 0.345253 0.345248

6 0.270473 0.270754 0.270747

10 1 0.083825 0.083908 0.083908

2 0.029978 0.030009 0.030008

3 0.015176 0.015193 0.015191

4 0.012161 0.012176 0.012174

5 0.015214 0.015231 0.015230

6 0.021156 0.021179 0.021178

Table 3
Frequencies (Hz) of a composite cylinder filled with compressible fluid (m=1).

n L/R=1 L/R=10

Present FE [17] Present FE [17]

1 35.8656 35.8756 2.3887 2.3819

2 30.0713 30.0001 0.9344 0.9336

3 24.4553 24.3251 0.5432 0.5444

4 19.9330 19.7685 0.4902 0.4896

5 16.4431 16.2609 0.6770 0.6703

6 13.7753 13.5850 1.0232 1.0075
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Fig. 3. Solution of the characteristic equation in the elastic case for n=1 and m=1.
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3 for the two torsional modes (1,0,1) and (2,0,1), we can easily verify from the matrices Aij that there is no coupling
between Uy and F if n=0;

3 for the axial mode (0,1,1), it clearly appears from the matrices Aij that there is no coupling between Ux and F if m=0.
Nevertheless, the electromechanical coupling for the axisymmetric one is important (EMCC 430 percent).

�
 For the other modes, as expected, the natural frequencies are slightly higher in the open circuited case than in the short

circuited case.
For bending mode (1,1,1), through-thickness variations of the mechanical and electrical parameters are now
represented and commented.

Figs. 6 and 7 present the thickness distribution of the electric potential and transverse electric displacement. These
figures show that the electric potential is almost zero with a quadratic evolution in the SC case and the electric



Table 4

First 20 non-dimensional frequency parameter o* ¼oR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS=c66

p
of a simply-supported PZT5H cylinder.

No. (m, n, t) Elastic Nastran Elastic exact Short-circuit Open-circuit EMCC (%)

1 (1,2,1) 0.1580 0.1578 0.1845 0.1873 17.09

2 (1,1,1) 0.2079 0.2079 0.2080 0.2219 34.88

3 (2,2,1) 0.3137 0.3136 0.3348 0.3510 30.00

4 (1,3,1) 0.3758 0.3747 0.4537 0.4546 6.40

5 (2,3,1) 0.4264 0.4256 0.5083 0.5119 11.90

6 (1, 0, 1) 0.4711 0.4712 0.4712 0.4712 0
7 (3,2,1) 0.5347 0.5345 0.5566 0.5877 32.07

8 (3,3,1) 0.5350 0.5346 0.6208 0.6313 18.19

9 (2,1,1) 0.5617 0.5617 0.5622 0.5934 32.00

10 (4,3,1) 0.6881 0.6879 0.7808 0.8001 21.84

11 (1,4,1) 0.7022 0.6991 0.8471 0.8496 7.70

12 (2,4,1) 0.7359 0.7333 0.8877 0.8907 8.25

13 (1, 0, 2) 0.7511 0.7512 0.7512 0.7943 32.49
14 (4,2,1) 0.7563 0.7561 0.7849 0.8288 32.10

15 (3,4,1) 0.8014 0.7995 0.9634 0.9683 10.13

16 (5,3,1) 0.8635 0.8635 0.9689 0.9966 23.40

17 (3,1,1) 0.8796 0.8790 0.8811 0.9293 31.77

18 (4,4,1) 0.9020 0.9011 1.0770 1.0856 12.56

19 (2, 0, 1) 0.9420 0.9425 0.9425 0.9425 0
20 (0, 1, 1) 0.9483 0.9478 0.9478 0.9478 0

(i) Elastic case, (ii) short circuited, (iii) open circuited case and (iv) the corresponding EMCC coefficient.

Fig. 4. First 10 modal shapes of a SS piezoelectric cylinder.
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displacement is almost zero with a quadratic evolution in the OC case. The results, given by our exact solution, can be used
to validate electrical assumptions used in other solutions like finite element method.

Figs. 8 and 9 show the thickness distributions of the mechanical displacements and stresses. As you can see, in contrary
of the mechanical stresses that are quadratic, the in-plane mechanical displacements are linear and influenced by the
electric boundary conditions. This is due to the fact that this mode is highly coupled (EMCC = 34.88 percent).

Fig. 10 presents the variation of the effective modal EMCC in terms of the half-wavenumbers in the axial and
circumferential directions (m and n) for different value of length to thickness ratio (L/H). We can see that the maximum EMCC
is always obtained for m=1 and n=1. For ratio (L/H=60), this figure indicates that the effective modal EMCC decreases for the
first values of circumferential number n but increases for higher values of n. It indicates also that the EMCC increase slightly
with increasing m from n=4. The EMCC decreases also with decreasing the length to thickness ratio (L/H).

Table 5 presents the eigenfrequencies of the fluid/piezoelectric–structure coupled system for different electric
boundary conditions. As expected, the frequencies are lower in the fluid–structure case due to the added mass effect of the



Fig. 5. Special modes: torsional modes (1,0,1) and (2,0,1), axial mode (0,1,1), and axisymmetric mode (1,0,2).

−0.02 0 0.02
0

0.2

0.4

0.6

0.8

1

z/
H

0

0.2

0.4

0.6

0.8

1

z/
H

0

0.2

0.4

0.6

0.8

1

z/
H

−2 0
x10−3

−0.02 0 0.02−1

Fig. 6. Through-thickness distribution of the electric potential for the mode (1, 1, 1). SC and OC cases (a), zoom in the SC case (b), zoom in the OC case (c).

—— Short-circuited (SC); - - - - open-circuited (OC).
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fluid. It is also important to note that the (m,n,t) triplet in the fluid/piezoelectric–structure case is not associated to the
same modes as in the case of the piezoelectric–structure in vacuo. In particular, the mode (1,0,2) in Table 5 corresponds to
the first fluid mode in rigid cavity. This has been confirmed by comparing the frequency of this mode to the analytical
solution given in the book of Blevins [19]. Consequently, this mode does not present any electromechanical coupling. In a
same way, the mode (0,1,1) in Table 5 is a pure structural mode. In fact, it corresponds to the axial mode given in Table 4.
As discussed previously, this particular mode does not present any electromechanical coupling but also no fluid–structure
coupling. This last point can be explained by the fact that the structural displacement is only in the axial direction and
therefore not coupled to the fluid which is inviscid.
7.3. Thick laminated piezoelectric cylinder

We consider in this last example a five-layer simply-supported thick cylinder. The geometrical properties of the
cylinder are L=20 mm, R=5 mm and h=1 mm. Moreover, the mechanical and material properties of each layer are given in
Tables 6 and 7, respectively.

The first 20 modes of the above described simply-supported thick cylinder are calculated using the proposed state-
space method in an elastic case (making null the piezoelectric material coefficients of the PZT layers) and in a non-
electroded case (considering the electric transverse displacement and potential continuous across the interface between
layers so that the piezoelectric layers can be seen as electrically perfectly bonded). In this last case the cylinder top and
bottom surfaces are considered free of transverse stresses and electric displacement. Pure elastic modes are also computed
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with the finite element code Nastran. The obtained results are presented in Table 8 for the frequencies and in Fig. 11 for the
first four modal shapes for m=1.

It can be observed from Table 8 the good agreement between the frequencies obtained with the state-space approach
and those obtained from a 3D finite element calculation with a very fine mesh. This comparison validates once again the
developed method and provides the modes identification. As shown in Table 8, the elastic frequencies are lower than those
calculated in a piezoelectric non-electroded case except for the modes 4, 6, 14 and 20 where the frequencies are exactly the
same. These modes correspond to torsion modes (4 and 14) and axial modes (6 and 20) without electromechanical
coupling because of the radial polarization of the piezoelectric layers.

Fig. 12 presents the frequency variations with radius-to-length ratio and thickness-to-radius ratio for the first four
modes of the simply-supported thick five-layer cylinder. The first graph indicates that the eigenfrequencies increase
monotonically with radius-to-length ratio for all modes. Moreover, this increase becomes linear for R=LZ2. It can be
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Table 5

First 20 non-dimensional frequency parameter o* ¼oR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS=c66

p
of a simply-supported PZT5H cylinder filled with compressible fluid.

No. (m, n, t) Uncoupled Coupled

Elastic Elastic Short circuited Open circuited

1 (1, 2, 1) 0.1578 0.1315 0.1537 0.1562

2 (1, 1, 1) 0.2079 0.1691 0.1692 0.1816

3 (2, 2, 1) 0.3136 0.2634 0.2811 0.2954

4 (1, 3, 1) 0.3747 0.3244 0.3925 0.3934

5 (2, 3, 1) 0.4256 0.3699 0.4414 0.4449

6 (1, 0, 1) 0.4712 0.3006 0.3007 0.3115

7 (3, 2, 1) 0.5345 0.4514 0.4699 0.4979

8 (3, 3, 1) 0.5346 0.4667 0.5415 0.5514

9 (2, 1, 1) 0.5617 0.4545 0.4550 0.4853

10 (4, 3, 1) 0.6879 0.6034 0.6842 0.7024

11 (1, 4, 1) 0.6991 0.6224 0.7531 0.7554

12 (2, 4, 1) 0.7333 0.6540 0.7907 0.7937

13 (1, 0, 2) 0.7512 0.4036 0.4036 0.4036

14 (4, 2, 1) 0.7561 0.6417 0.6658 0.7058

15 (3, 4, 1) 0.7995 0.7150 0.8603 0.8653

16 (5, 3, 1) 0.8635 0.7612 0.8530 0.8792

17 (3, 1, 1) 0.8790 0.6989 0.7005 0.7472

18 (4, 4, 1) 0.9011 0.8084 0.9646 0.9732

19 (2, 0, 1) 0.9425 0.5801 0.5801 0.6044

20 (0, 1, 1) 0.9478 0.9478 0.9478 0.9478

Table 6
Mechanical properties of the laminated piezoelectric cylinder.

Properties Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Thickness h/5 h/5 h/5 h/5 h/5

Material PZT-5H Gr/E 01 Gr/E 901 Gr/E 01 PZT-5H

Table 7
Properties of Graphite-Epoxy and PZT-5H materials.

Properties Graphite-Epoxy (Gr/E) PZT-5H

c11 (GPa) 183.443 126

c22 (GPa) 11.662 126

c33 (GPa) 11.662 117

c12 (GPa) 4.363 79.5

c13 (GPa) 4.363 84.1

c23 (GPa) 3.918 84.1

c44 (GPa) 2.87 23

c55 (GPa) 7.17 23

c66 (GPa) 7.17 23.3

e15 (C m�2) 0 17

e24 (C m�2) 0 17

e31 (C m�2) 0 �6.5

e32 (C m�2) 0 �6.5

e33 (C m�2) 0 23.3

E11 ð10�10 F m�1Þ 153 150.3

E22 ð10�10 F m�1Þ 153 150.3

E33 ð10�10 F m�1Þ 153 130

rS ðkg m�3) 1590 7500
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observed from the second graph that only two of the four first frequency modes are influenced by the thickness-to-radius
ratio, the two others staying constant in terms of h/R.

The exact solution allows the reconstruction of the evolution of the electrical and mechanical quantities through the
thickness of the laminated piezoelectric cylinder. These evolutions correspond to variations of the dimensionless quantities
Ui,Sij,Di and F for i,j¼ x,y,r. We present in Figs. 13–15 these evolutions for the first flexion mode (1, 2, 1).

Firstly, we observe that the resulting solution satisfies the boundary conditions imposed on the inner and outer surfaces
of the cylinder, i.e. Srx ¼Sry ¼Srr ¼Dr ¼ 0 for r ¼ 1 and 1:2. Moreover, we observe from these figures that there is



Table 8
First 25 modal frequencies (kHz) of a simply-supported thick five-layer cylinder.

No. Mode Elastic Non-electroded

(m, n, t) Exact Nastran Exact

1 (1, 2, 1) 23.290 23.217 25.627

2 (1, 1, 1) 30.014 29.346 30.508

3 (1, 3, 1) 40.674 40.837 45.907

4 (1, 0, 1) 46.174 44.901 46.174

5 (2, 2, 1) 46.531 46.384 49.482

6 (0, 1, 1) 53.575 52.098 53.575

7 (2, 3, 1) 54.763 55.422 60.457

8 (2, 1, 1) 61.715 60.500 63.158

9 (1, 4, 1) 67.206 67.443 74.534

10 (3, 2, 1) 71.555 72.341 75.755

11 (3, 3, 1) 75.236 77.216 81.631

12 (2, 4, 1) 76.810 77.769 84.560

13 (3, 1, 1) 88.632 88.047 91.905

14 (2, 0, 1) 92.342 89.785 92.342

15 (3, 4, 1) 92.676 95.174 100.931

16 (4, 2, 1) 96.978 100.050 102.699

17 (1, 5, 1) 96.984 97.259 105.737

18 (4, 3, 1) 98.701 103.100 106.019

19 (2, 5, 1) 104.459 105.510 113.537

20 (0, 2, 2) 107.115 104.160 107.115

(i) Elastic case (comparison with Nastran) and (ii) non-electroded piezoelectric case.

Fig. 11. First four modal shapes for m=1 of a simply-supported thick five-layer cylinder.
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continuity of mechanical displacement, transverse stresses, transverse electric displacement and electric potential
between the layers. Nevertheless, as the different layers of the laminate cylinder have different composition (different
materials or different orthotropy directions), we have discontinuities of the plane stress and the electric displacement
components at the interfaces between layers. It should be noted that conditions on r ¼ 1:2 are not imposed directly, but are
found after calculating the reconstitution of all variables by assembling the various sub-layers.

Secondly, the electromechanical coupling of this mode is due to the fact that there is a radial displacement that induces
an electric field due to the radial electric polarization.

Finally, our solution being exact, we can accurately plot the evolutions of all parameters in the thickness of the
laminated cylinder. For example, since the cylinder is relatively thin (h/R = 0.2), we observe, as expected, that the
displacement component Ur is almost constant in the thickness whereas the components Ux and Uy are quasi-linear.

8. Conclusion

In this paper, an exact 3D mixed state-space solution has been presented for the free-vibration analysis of multilayer
piezoelectric hollow cylinders filled with fluid. The piezoelectric layers of the laminated cylinder are supposed to be
polarized in the radial direction and the fluid is considered inviscid and compressible. The proposed formulation retains, as
state variables, the standard mechanical displacements and transverse stresses augmented with the electric transverse
displacement and potential. One of the major advantages of the method is that the resulting eigenvalue problem is only of
order four, independently of the number of layers constituting the laminated cylinder. Moreover, the effect of internal fluid
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W. Larbi, J.-F. Deü / Journal of Sound and Vibration 330 (2011) 162–181178



−2 0 2 4 6
1

1.04

1.08

1.12

1.16

1.2

r/
R

Σxx

−1 0 1 2
1

1.04

1.08

1.12

1.16

1.2

−0.02 0 0.02 0.04
1

1.04

1.08

1.12

1.16

1.2

Σrr

0 0.02 0.04 0.06 0.08
1

1.04

1.08

1.12

1.16

1.2

r/
R

r/
R

r/
R

r/
R

r/
R

−0.04 0
1

1.04

1.08

1.12

1.16

1.2

Σrx Σx�

0.52 0.54 0.56 0.58 0.6
1

1.04

1.08

1.12

1.16

1.2

Σ��

Σr�

−0.01−0.02−0.03

Fig. 14. Mechanical stresses through-thickness distributions for the bending mode (1,2,1) of a simply-supported thick cylinder with non-electroded

electric boundary condition: axial stress Sxx (a), circumferential stress Syy (b), radial stress Srr (c), transverse shear stress Sry (d), transverse shear stress

Srx (e), in-plane shear stress Sxy (f).

0
1

1.04

1.08

1.12

1.16

1.2

r/
R

1

1.04

1.08

1.12

1.16

1.2

r/
R

1

1.04

1.08

1.12

1.16

1.2

r/
R

1

1.04

1.08

1.12

1.16

1.2

r/
R

Dx

0

D�

−2 0 2

Dr

−0.01 0 0.01
x 10−3 Φ

Fig. 15. Electric displacements and potential through-thickness distributions for the bending mode (1,2,1) of a simply-supported thick cylinder with non-

electroded electric boundary condition: axial electric displacement Dx (a), circumferential electric displacement Dy (b), radial electric displacement Dr (c),

electric potential F (d).
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is simply taken into account by imposing a non-zero normal stress at the fluid structure interface. After its validation, the
proposed formulation was applied to various examples showing in particular the influence of the electric boundary
conditions and of the presence of an internal fluid on the natural frequencies of the coupled system. The results presented
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in this paper can be used to clarify the accuracy of approximated shell theories and to investigate the effects of various
parameters on the natural frequencies and mode shapes of the fluid–structure coupled system.

Appendix A

Sub-matrices aij (for i,j=1,2) appearing in Eq. (3):
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